Infinite-Dimensional Degree Theory and Ramer’S Finite Co-Dimensional Differential Forms
نویسندگان
چکیده
منابع مشابه
infinite dimensional garch models
مدلهای گارچ در فضاهای هیلبرت پایان نامه حاضر شامل دو بخش می باشد. در قسمت اول مدلهای اتورگرسیو تعمیم یافته مشروط به ناهمگنی واریانس در فضاهای هیلبرت را معرفی، مفاهیم ریاضی مورد نیاز در تحلیل این مدلها در دامنه زمان را مطرح کرده و آنها را مورد بررسی قرار می دهیم. بر اساس پیشرفتهایی که اخیرا در زمینه تئوری داده های تابعی و آماره های عملگری ایجاد شده است، فرآیندهایی که دارای مقادیر در فضاهای ...
15 صفحه اولDifferential Forms on Wasserstein Space and Infinite-dimensional Hamiltonian Systems
Let M denote the space of probability measures on R endowed with the Wasserstein metric. A differential calculus for a certain class of absolutely continuous curves in M was introduced in [4]. In this paper we develop a calculus for the corresponding class of differential forms on M. In particular we prove an analogue of Green’s theorem for 1-forms and show that the corresponding first cohomolo...
متن کاملInfinite-dimensional Quadratic Forms Admitting Composition
In [2] Albert proved that a finite-dimensional absolute-valued algebra over the reals is necessarily alternative (and hence the reals, complexes, quaternions, or Cayley numbers). In [3] he extended this from finite-dimensional to algebraic algebras. Recently, Wright [9] succeeded in removing the assumption that the algebra is algebraic. Wright proceeds by proving that the norm springs from an i...
متن کاملDirichlet forms: Some infinite dimensional examples
The theory of Dirichlet forms deserves to be better known. It is an area of Markov process theory that uses the energy of functionals to study a Markov process from a quantitative point of view. For instance, the recent notes of Saloff-Coste [S-C] use Dirichlet forms to analyze Markov chains with finite state space, by making energy comparisons. In this way, information about a simple chain is ...
متن کاملFinite dimensional approximation in infinite dimensional mathematical programming
We consider the problem of approximating an optimal solution to a separable, doubly infinite mathematical program (P) with lower staircase structure by solutions to the programs (P(N)) obtained by truncating after the first N variables and N constraints of (P). Viewing the surplus vector variable associated with the Nth constraint as a state, and assuming that all feasible states are eventually...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Quarterly Journal of Mathematics
سال: 2021
ISSN: 0033-5606,1464-3847
DOI: 10.1093/qmath/haab022